OPERATION AND MAINTENANCE **SWAN MODEL 700-CX** # OPERATION AND MAINTENANCE SWAN MODEL 700-CX # **Transceiver** #### INTRODUCTION The Swan Model 700CX Transceiver together with its accessories and optional equipment, is designed to be used in either CW, AM or SSB modes on all portions of the 80-, 40-, 20-, 15-, and 10 meter amateur radio bands. Many of the MARS frequencies may also be covered by using the Model 510X oscillator accessory. The Model 700CX generates a single sideband signal by means of crystal lattice filter, and the transceive operation automatically tunes the transmitter to the received frequency. Provisions are included in the transceiver for operation on either upper or lower sideband. Basic circuitry of the single conversion design has been proven in several thousand of the popular Swan transceivers. Mechanical, electrical, and thermal stability is exceptionally high. All oscillators are temperature compensated and voltage regulated. Push-to-talk operation is standard, with provision for plugging in the Model VX-2 accessory VOX unit for automatic voice control and CW break-in. Operation may be fixed, station, portable, or mobile. Power input exceeds 700 watts, PEP, on single sideband, 400 watts on CW, and 125 watts on AM. The Model 700CX includes automatic gain control (AGC), automatic level control (ALC), automatic noise limiter (ANL), grid block keying, CW sidetone monitor, and provisions for break-in CW. Recommended power supplies are the Model 117-XC for 117 volts AC operation, the Model 230-XC for 230 volts AC, and the 14-117 for 12-14 volts DC. These power supplies, as well as other accesories, are described in later sections of this manual # CONTENTS | Page CIRCUIT THEORY 3 INSTALLATION 5 OPERATION 9 ALIGNMENT AND TROUBLESHOOTING 14 CERCUIT THEORY 14 CERCUIT THEORY 14 CERCUIT THEORY 15 CERCUIT THEORY 15 CERCUIT THEORY 16 CERCUI | PARTS LIST | |--|---| | SPECIF | FICATIONS | | FREQUENCY RANGES 80 Meters 3.5 to 4 mc. 40 Meters 7.0 to 7.450 mc. 20 Meters 14.0 to 14.450 mc. 15 Meters 21.0 to 21.450 mc. 10 Meters 28.0 to 29.7 mc. | REAR PANEL CONTROLS AND CONNECTIONS Bias potentiometer, CW key jack, Jones plug power connector, Vox connector, Antenna jack, S-Meter zero, Auxiliary relay switching, Out- board VFO connector. | | 10 Meters 28.0 to 29.7 mc. POWER INPUT Single Sideband, Suppressed Carrier: 700 watts, PEP input. CW: 400 watts, dc input. AM (Single Sideband with Carrier): 125 watts dc input. | VACUUM TUBE COMPLEMENT V1 6EW6 VFO Amplifier V2 12BE6 Transmitter Mixer V3 6GK6 Driver V4 8950 Power Amplifier V5 8950 Power Amplifier V6 6BZ6 Receiver RF Amplifier V7 12BE6 Receiver Mixer | | DISTORTION Distortion products down approx. 30 db. | V8 12BA6 First IF Amplifier
V9 12BA6 Second IF Amplifier
V10 12AX7 Product Detector/Receive Audio | | UNWANTED SIDEBAND SUPPRESSION Unwanted sideband down more than 50 db. | V11 6BN8 AGC/ALC Amplifier V12 6GK6 Audio Amplifier V13 6JH8 Balanced Modulator V14 12AX7 Mic. Amplifier/Transmit Audio | | CARRIER SUPPRESSION Carrier suppression greater than 60 db. | V14 12AX7 Mic, Amplifier/Transmit Audio
DIODE AND TRANSISTOR COMPLEMENT | | RECEIVER SENSITIVITY Less than 0.5 microvolt at 50 ohms impedance for signal-plus-noise to noise ratio of 10 db. | Q1 VFO Q2 Emitter Follower Q3 Carrier Oscillator Q4 Crystal Calibrator | | AUDIO OUTPUT AND RESPONSE. Audio output, 4 watts to 3.2 ohm load. Response essentially flat from 300 to 3000 cps in both receive and transmit. | Q5 Crystal Calibrator Q6 Crystal Calibrator Q7 Crystal Calibrator D401 Relative Output Diode D701 Overload Diode | | TRANSMITTER OUTPUT Wide-range Pi-network output matches antennas essentially resistive from 15 to 500 ohms imped- ance, with coarse and fine load adjustment. | D1101 ANL Diode D1102 ANL Diode D1201 CW Switching Diode D1202 CW Switching Diode D1801 Zener | | AMPLIFIED ALC
Limits modulation level. | D1802 Relay Silencing Diode
D1803 AGC Diode
D1804 AGC Diode | | AUDIO SIDETONE
For CW Monitoring | D1805 AGC Diode POWER REQUIREMENTS | | PLUG IN VOX Optional accessory. Also provides bk-in CW. | Filaments 12.6 volts, 6.7 amps, ac or de
Relay 12 volts de, 250 ma.
Bias — 110 volts de, 100 ma. | | FRONT PANEL CONTROLS AF-RF Gain, Sideband Selector CAL-REC- TRANS-CW-TUNE, Mic. Gain, Bandswitch, Car- rier Balance, PA Plate Tune, PA Grid Tune, PA Load Coarse, PA Load Fine, VOX-PTT Switch. | Med. voltage 275 volts dc, 150 ma. High voltage 800 volts dc, 1A Peak Trans. DIMENSIONS AND WEIGHT | | ANL Switch, Dial set, Output Level, 25-100 kc calib. switch. | Height 5½ in. Depth 11 in.
Width 13 in. Weight 17½ lb. | # CIRCUIT THEORY #### GENERAL DISCUSSION The Swan 700CX transceiver provides single sideband, suppressed carrier transceive operation, and generates the single sideband signal by means of a crystal lattice filter. To permit a logical discussion of this mode of operation, certain definitions are necessary. In a normal AM signal, (double sideband with carrier), a radio frequency signal is modulated with an audio frequency signal. This is considered by many to be merely a case of varying the amplitude of the carrier at an audio rate. In fact, however, there are actually sideband frequencies generated, which are the results of mixing the RF and the AF signals. These sidebands are the sum of, and the difference between the two heterodyned signals. In the detection of this conventional AM signal, the two sidebands are mixed with the carrier to recover and reproduce the audio intelligence. This is an inefficient means of transmission, because only 25 percent of the transmitted power is used to transmit intelligence. There are other attendant drawbacks, also. The bandwidth of AM voice transmission is approximately 6 kc, while the actual demodulated audio is only approximately 3 kc. The result is inefficient use of the frequency band, and over half of the allotted band is unusable due to heterodynes, interference, and congestion. In the single sideband, suppressed carrier mode of transmission, only one of the sideband signals is transmitted. The other sideband and the carrier are suppressed to negligible level. In addition to increasing the transmission efficiency by a factor of four, single sideband effectively doubles the number of stations or channels which can be used in a given band of frequencies. It should be remembered that in the single sideband, suppressed carrier mode of transmitting, the unwanted sideband and carrier are only suppressed, not entirely eliminated. Thus, with a transmitted signal from a transmitter with 50 db sideband suppression, the other or unwanted sideband will be present, and will be transmitted, but its level will be 50 db below the wanted sideband. When this signal is received at a level of 20 db over S9, the unwanted sideband will be present at a level of approximately S5. The same is true of carrier suppression. With carrier suppression of 60 db, and a signal level of 20 db over S9, carrier will be present at a level of approximately S3 to S4. In the Model 700CX transceiver, the single sideband suppressed carrier signal is generated by the crystal lattice filter method. For details, refer to the schematic diagram, and to Figures 1, 2, and 4 #### SIGNAL GENERATION When the push-to-talk switch on the microphone is pressed, the transmitter portion of the transceiver is activated; and it generates a single sideband, suppressed carrier signal in the following manner. Carrier is generated by a crystal oscillator using transistor, Q3. This stage operates in both the transmit and receive modes. When transmitting, the RF output of the oscillator is injected into the control grid of the Balanced Modulator, V13. This balanced modulator is a
beam deflection tube, and operates similar to a cathode ray tube in that the electron beam from the cathode is deflected to one output plate or the other by the charge appearing on the deflection plate. The carrier signal fed to the control grid of the balanced modulator appears on both plates of the output. The two plates are connected to Transformer T1301 in push-pull, so the carrier signal cancels itself out in T1301. The deflection plate DC voltages are adjusted by means of the carrier balance control so that the RF being fed to the output plates will cancel out, and the output from T1301 will be zero. Audio signals from the Microphone Amplifier, V15, are applied as a modulating voltage to one deflection plate, and the two sidebands resulting from the sum and difference frequencies of the audio and carrier signals appear in the output of transformer T1301. Carrier suppression is approximately 60 db. The double sideband, suppressed carrier signal is then coupled from the secondary winding of T1301 to the crystal filter, which suppresses the lower sideband, and permits only the upper sideband to be fed to the First IF Amplifier, V8. The carrier frequency is generated at approximately 5500.0 kc. normal sideband. With the opposite sideband crystal, the carrier crystal frequency will be 5503.3 kc. and this positions the double sideband signal on the other side of the filter response curve, attenuating the upper sideband by at least 50 db. In the single conversion mixing process, these sidebands become inverted on 80 and 40 meters. Thus the Swan 700CX normally operates on lower sideband on 80 and 40, while on 20, 15, and 10 meters normal operation is on upper sideband. Q1, the VFO 2N706 Oscillator, operates in the common base configuration as a colpitts oscillator. Q2, The Emitter Follower is used for isolation. The extremely good regulation achieved through using the Zener diode regulator D1801 across the bias supply voltage, also contributes to the stability, Bandswitching is accomplished by changing the tank circuit coil. The VFO in the Model 700CX exhibits extremely good stability after the initial warm-up period. Drift from a cold start will be less than 1 kc for the first hour on 80, 40, and 20-meter bands, and less than 2 kc on 10 and 15 meters. After the initial warm-up period, drift will be negligible. FIGURE 2. BLOCK DIAGRAM, TRANSMIT MODE #### SIGNAL GENERATION (cont.) The single sideband, suppressed carrier signal from the first IF Amplifier is fed to the Transmitter. Mixer, V2, where it is heterodyned with the VFO signal. The resultant signal at the desired transmit frequency is amplified by the Driver, V3, and the Power Amplifiers, V4 and V5. The signal from the VFO Amplifier is initiated in the transistorized VFO-Emitter Follower circuit Q1 and Q2. The signal from the VFO is routed to the VFO Amplifier, and on 40 and 80 meters, is subtractively mixed with the single sideband signal from the IF Amplifier, and result in LSB operation. On 20, 15, and 10 meters, the frequencies are additively mixed, resulting in output on the upper sideband. When in TRANSMIT, the gain of the First IF Amplifier, is controlled by an amplified ALC circuit, V11, in response to the average input power to the Power Amplifiers. This ALC system will compensate for extremely strong input signals, but does not completely eliminate the necessity of proper adjustment of the Mic. Gain Control. This feature will help prevent the transmitter from flat topping and spurious emissions, but considerable distortion may occur if the Mic, Gain Control is not properly adjusted. Refer to Operating Instructions. #### INSTALLATION #### POWER SUPPLY - AC Operation. The Swan Models 117-XC or 230-XC Power Supplies provide all necessary voltage required by the transceiver for AC operation. The supplies come equipped with a prewired plug and cable, all ready for plugging into the transceiver. - DC Operation. The Model 14-117 supply for mobile operation includes all necessary cables, connector plug, fuses, and installation hardware. The Jones plug for connection to the transceiver is furnished with the unit. Power requirements for the Swan 700-CX are listed in the following table. Pin connections to the Jones type power connector are listed as an aid in connecting other brands or home-brew supplies. # JONES PLUG CONNECTIONS | | Pin · | Nominal | Minimum | Maximum | |---------------------|-------|--------------------|---------------------|-----------------------| | High
Voltage | 8 | 800 VDC
800 MA | 600 VDC
Low Pwr. | 1200 VDC
Hi, Power | | Medium
Voltage | 10 | 275 VDC
150 MA | 225 VDC | 325 VDC | | Bias
Voltage | 3 | -110 VDC
100 MA | -100 VDC | -130 VDC | | Filament
Voltage | 4 | 12.6 V*
6.7 Amp | 11.5 V | 14.5 V | | Relay
Voltage | -5 | 12 VDC
250 MA | 10 VDC | 14.5 VDC | #### ANTENNA 1. Fixed Station. Any of the common antenna systems designed for use on the high frequency amateur bands may be used with the Swan transceiver, provided the input impedance of the transmission line is not outside the capability of the pi-output matching network. The transmission line should be of the coaxial cable type. An antenna system which shows a standing wave ratio of less than 4:1 when using 50 or 75 ohm coaxial transmission line, or a system that results in a transmission line input impedance that is essentially resistive, and between 15 and 500 ohms will take power from the transceiver with little difficulty. If open-wire or balanced type transmission line is used with the antenna, a suitable antenna tuner is recommended between the transceiver and the feed line. Methods of construction and operating such tuners are described in detail in the ARRL Antenna Handbook, and similar publications. For operation on the 75 and 40 - meter bands, a simple dipole antenna, cut to resonance in the most used portion of the band, will perform satisfactorily. For operation on the 10, 15, and 20 meter bands, the efficiency of the station will be greatly increased if a good directional rotary antenna is used. Remember that even the most powerful transmitter is useless without a proper and efficient antenna system. - 2. Mobile Station. Mobile antenna installations are critical, since any mobile antenna for use on the high frequency bands represents a number of comprises. Many amateurs lose the efficiency of their antenna through improper tuning. Points to remember about the mobile antenna used with the Swan 700-CX are: - a. The "Q" of the antenna loading coil should be as high as possible. There are several commercial models available which use high "Q" coils, including the Swan Model 45 and Model 55 five band "Swantennas." - b. The loading coil must be capable of handling the power of the Model 700-CX without overheating. In TUNE position, the power output of the transceiver may exceed 250 watts. Wide spaced, heavy wire loading coils are essential. - c. The SWR bridge is a useful instrument, but unfortunately it is quite often misunderstood, and overrated in importance. Basically, the SWR bridge will indicate how closely the antenna load impedance matches the transmission line. With long transmission lines, such as will be used in many fixed station installations. it is desirable to keep the impedance match fairly close in order to limit power loss. This is particularly true at the higher frequencies. The longer the line, and the higher the frequency. the more important SWR becomes. However, in mobile installations the transmission line seldom exceeds 20 feet in length, and an SWR of even 4 to 1 adds very little to power loss. The only time SWR will indicate a low figure is when the antenna presents a load close to 50 ohms, but many mobile antennas will have a base impedance as low as 15 or 20 ohms at their resonant frequency. In such a case, SWR will indicate 3 or 4 to 1, and yet the system will be radiating efficiently. - d. The really important factor in your mobile antenna is that it should be carefully tuned to resonance at the desired frequency. The fallacy in using an SWR bridge lies in the fact that it is sometimes possible to reduce the SWR reading by detuning the antenna. Field strength may actually be reduced in an effort to bring SWR down. Since field strength is the primary goal, we recommend a Field Strength Meter for antenna tuning. #### ANTENNA (cont.) e. For antenna adjustments, the Swan 700-CX should be loaded lightly to about 100 ma, cathode current instead of the usual 500-800 ma. This will limit tube dissipation during adjustments, and will also help reduce interference on the frequency. In any case, do not leave the transmitter on for very long at one time. Turn it on just long enough to tune and load, and get a field strength reading. Start out with the antenna whip at about the center of its adjustment range. Set the VFO to the desired operating frequency and then adjust P.A. TUNE for dip, and P.A. LOAD for 100 ma. Then observe the field strength reading. The Field Strength Meter may be set on top of the dash, on the hood, or at an elevated location some distance from the car. Change the whip length a half inch, or so, at a time, retune the P.A. for 100 ma, loading each time, and check field strength. Continue this procedure until the point of maximum field strength is found, This adjustment will be most critical on 75 meters, somewhat less critical on 40, etc., until on 10 meters the adjustment will be quite broad. After tuning the antenna to resonance, load the P.A. to full power. #### MICROPHONE The microphone input is designed for high impedance microphones only. The choice of microphone is important for good speech quality, and should be given serious consideration. The crystal lattice filter in the transceiver provides all the restriction necessary on audio response, and further restriction in the microphone is not required. It is more important to have a microphone with a smooth, flat response throughout
the speech range. The microphone plug must be a standard ¼ in, diameter threecontact type. The tip connection is for push-to-talk relay control, the ring connector is the microphone terminal, and the sleeve is the common chassis ground. The microphone manufacturer's instructions should be followed in connecting the microphone cable to the plug. With many microphones, the push-to-talk button must be pressed to make the microphone operative. For VOX operation, this feature may be disabled, if desired, by opening the microphone case and permanently connecting the contacts which control the microphone. ## EXTERNAL SPEAKER CONNECTIONS Receiver audio output from the 700-CX is at 4 ohms voice coil impedance. This output is terminated at pin 12 of the Jones Power connector. When using the 117-XC matching power supply, connection is automatically made to the speaker which is built into the supply. For mobile installations, an external speaker may be connected to pin 12 of the Jones connector. The other speaker terminal goes to pin 6, or chassis ground. The speaker may be any good 4 ohm permanent magnet type in the 4 inch or larger size. #### INTERNAL SPEAKER Provision is made for installation of a standard 3 x 5 inch speaker inside the 700-CX. This may be desirable particularly in mobile installations. The speaker mounts on the left side of the chassis – terminal lugs are provided near the 6GK6 audio output tube. Simply connect wires from the 2 speaker lugs to these terminals. One is "hot," and the other is ground. #### AUXILIARY SWITCHING A 3 lug terminal strip on back of the 700-CX provides for switching of external accessories. They are marked R, C, and T. R and C are connected when receiving. C and T are connected when transmitting. In particular, terminals C and T are used when the Swan Mark II Linear Amplifier is used. #### V6 OUTPUT A phono type output jack is provided on back of the 700-CX for connecting the antenna system to an auxiliary receiver. Thus, a separate receiver may be used, if desired, with the same antenna system. V6 is the 6BZ6 R.F. amplifier stage in the 700-CX receiver circuit, and it serves as a pre-amplifier for the auxiliary receiver. #### CONTROL FUNCTIONS On-Off Switch (On AF Gain Knob) Turns power supply on and off. #### Cal-Rec-Trans-CW-Tune Calibrate All voltages are applied to transceiver. Grounds emitters of Q4, Q5, Q6, and Q7. Removes ground from cathode of V14A. Receive All Voltages are applied to transceiver. Transmit 12 volt DC circuit through relay K1 and K2 is completed, and tubes used only in receive are biased to cutoff. Meter reads P.A. cathode current. 7°14 All circuits for transmit are energized, as above. Capacitor C1501 in the carrier oscillator is removed from ground. Carrier must be inserted with CAR, BAL, control, Meter reads P.A, cathode current. Tunc Same as CW except that carrier is fully inserted. Meter reads relative output. # CONTROL FUNCTIONS (cont.) #### Mic. Gain Controls potentiometer R1402 in the grid of V14A. Controls amount of audio to the balanced modulator. #### Car. Balance Controls potentiometer R1307 in the balanced modulator deflection plate circuit, and permits nulling out the carrier. #### RF Gain Controls variable resistor R1809, Controls gain of receiver mixer, RF Amplifier, and IF Amplifiers. #### AF Gain Controls potentiometer R1201 in grid circuit of V12 AF Output, Controls audio volume. ### Main Tuning Controls C1708 in frequency determining tank circuit of VFO. #### Panel Meter Reads S-Units in Receive mode, P.A. cathode Ma, in trans, and CW, mode, and relative output in TUNE Mode. #### Main Bandswitch Switches plate coils, and associated capacitors of VFO, VFO Amplifier, V1, Transmitter Mixer, V2, and Driver, V3. Also switches tank coil of pi-coupling system and associated capacitors in PA output tank. #### Output Level Adjusts meter reading when in TUNE mode. Note that this control has no effect on power output, but determines only the relative meter reading. #### Sideband Selector Selects Normal Opposite sideband. Normal is LSB on 80 and 40 meters, USB on 20, 15 and 10 meters. #### PA Bias (Rear Control) Adjust idling cathode current of Power AMP. #### S-Meter Zero (Rear Control) Adjusts S-Meter to Zero Reading with antenna disconnector. #### PTT-VOX Switch PTT position for press-to-talk operation VOX position for voice control with VX-2 accessory. #### ANL Automatic noise limiter on in right hand position. #### CAL, 100KC-25KC Selects 100KC or 25KC calibration markers. #### PA Grid Controls C1812A and C1812B in plate tanks of transmitter mixer and driver. #### PA Plate Controls C411 on pi-network to tune final power amplifier plate to resonance. #### PA Load, Fine Controls C412 in pi-network to match impedance of output load. Tunes input to Receiver RF Amplifier. #### PA Load, Coarse Switches in progressively more capacitance in parallel with PA LOAD, Fine. FIGURE 3. MOBILE MOUNTING ON TRANSMISSION HUMP UNDER DASH #### **OPERATION** Before connecting any cables to the Swan 700 CX perform the following steps: - Locate the P.A. compartment and remove the packing material from the P.A. tubes. - Rotate the CAL-REC-TRANS-CW-TUNE switch on the lower left of the front panel counterclockwise to REC. - Rotate the AF GAIN control counterclockwise to OFF. - Connect wire from earth ground to ground stud provided on rear of chassis. - Connect a 50 to 75 ohm antenna feed-line to the coaxial connector on the rear chassis panel. - Connect the power supply cable to the Jones connector on the rear chassis. - Connect the power supply to the proper voltage source. #### WARNING Dangerous high voltage is present on the plate of the power amplifier whenever the power supply is energized. Never turn power on when the power amplifier cover is removed. High voltage is also present at Pin eight of the power plug. #### RECEIVER In RECEIVE position, or at any time when the transmitter is not in TRANSMIT, all circuits used in transmitting are diabled through the relay controlled circuits, K1, K2. The relays are energized for transmitting and de-energized for receiving. Relay K2, when de-energized, allows signals from the transmitting tank circuit and antenna to be fed to the receiver RF Amplifier, V6, where they are amplified and then fed to the control grid of the Receiver Mixer, V7. The local oscillator signal from the VFO Amplifier is now used to heterodyne the received signal to the IF frequency. All IF amplification is accomplished at this frequency, nominally 5500.0 kc, through V8 and V9 IF amplifiers. In the Product Detector V10A, the IF signal is heterodyned with the carrier frequency generated by Carrier Oscillator, Q3. The resultant audio signal is then put through a noise clipper network which is in our out of circuit by selection of ANL swtich. The signal is then amplified by V10B, which then couples to V11, the AGC Amplifier, and V12, the output audio stage. #### RECEIVER OPERATION Rotate the AF GAIN control clockwise to about the 3 o'clock position. The power switch will operate applying filament, relay, bias, medium, and 800 volt high voltage to the transceiver. - Wait approximately one minute to allow the tube filaments to reach operating temperature. During this period, perform the following steps: - Rotate the BANDSWITCH to desired band. - Rotate MIC, GAIN fully counterclockwise. - c. Rotate CAR. BAL. control to the midscale position, with white dot on knob aligned with the long index mark on the panel. - d. Preset PA PLATE control to midposition. - e. Preset PA GRID control to mid-position. - Preset PA LOAD FINE to mid-position. - g. Preset PA LOAD COARSE to position 1. - h. Set tuning dial to desired frequency. - Set RF GAIN control to approximately 3 o'clock position. - 3. Carefully adjust the PA GRID and the PA PLATE controls for maximum receiver noise. NOTE: The PA GRID control resonates the transmitter driver stages and the receiver RF amplifier plate circuit. The PA PLATE and PA LOAD controls adjust the input and output capacitors in the transmitter power amplifier final plate circuit, as well as the receiver RF amplifier grid circuit. Proper adjustment of these controls in the receiver position will result in approximately resonant conditions in the transmitter stages. #### RECEIVER TUNING The tuning dial of the 700-CX has a green tinted scale reading from zero to 450 which is used on 40, 20 and 15 meters. Above the green scale is a separate calibration for 80 meters, reading from 3500 to 4000KC. Below the green scale is the 10 meter scale, reading from 28 to 29.7 MC. Precise tuning of a single sideband signal is very important. Do not be satisfied to merely tune until the voice can be undersood, but take the extra care of setting the dial to the exact spot where the voice sounds natural. Above all, avoid the habit of tuning so that the voice is pitched higher than normal. This is an unfortunate habit practiced by quite a number of operators. The following points help to explain the effects of mistuning: If you tune so the received voice is higher than normal pitch, you will then transmit off frequency, and your voice will sound lower than normal pitch to the other station. He will # RECEIVER TUNING (cont.) probably retune his dial to make you sound right. If you keep this up, you will gradually waltz one another across the band. If both of you are mistuning to an unnatural higher pitch, you will waltz across the band twice as fast. (And someone will no doubt be accused of frequency drift.) - Mistuning results in serious harmonic distortion on the voice, and should be quite noticeable to the average ear. Some will claim that if they don't know how the other person's voice actually sounds, they can't tune him in properly, but this is not true. With a little practice, it is fairly easy to tell. Some voices are relatively rich in harmonics, and are easier to tune in than a person with a "flat" voice. Also, a transmitter which is being
operated properly with low distortion will be easier to tune in than one which is being overdriven and is generating excessive distortion. There is no mistaking when you have a station tuned right on the nose. It will sound just like "AM," so to speak, Mainly, avoid the habit of tuning so everyone sounds higher than normal pitch, or like Donald Duck. This is incorrect, unnecessary, and sounds terrible. - A vernier control for receive frequency, sometimes referred to as "incremental tuning," is not available on the Swan 700-CX. Such a device is not necessary if proper tuning habits are exercised. - 4. Your Swan 700-CX will automatically transmit on exactly the same frequency as the one to which you are listening. There is no adjustment for making them the same, since by using the same oscillator for both send and receive, it happens automatically. If separation of receive and transmit frequency control is desired, the Model 508 VFO unit may be used. #### TRANSMITTER ### Power Rating The SWAN 700-CX is capable of 400 watts, PEP input under steady state two-tone test conditions, when operated with any of the recommended power supplies. The peak envelope power, when voice modulated, is considerably greater, typically 700 watts, or more. Recommended power supplies produce a no-load plate voltage of approximately 925 volts. Under TUNE conditions, or CW operation, this voltage will drop to approximately 700 volts. Under steady state two-tone modulation, the voltage will drop to approximately 750 volts. If the power amplifier idling current is 50 ma, and the two-tone current, just before flat-topping, is 400 ma, the peak two-tone current will be 600 ma. Under these conditions the PEP input will be 750 volts times 600 ma = 450 watts. Under voice modulation, because average power is considerably less, the power amplifier plate and screen voltages will be maintained higher, even during voice peaks, by the power supply filter capacitors. Peak plate current will therefore also be higher than with two-tone test conditions. Under typical operating conditions, peak plate current before flat-topping may on some bands be as high as 1 amp at over 800 volts, to result in an input of over 800 watts, PEP. Readings of cathode current will not reflect this over 800 watt power input, however, because of the damping in the cathode current meter. Cathode current readings under normal voice input should not exceed approximately 225 ma on occasional peaks. #### POWER AMPLIFIER PLATE DISSIPATION There is often a misunderstanding about the plate dissipation of tubes operated as AB1 amplifiers under voice modulation. In the Swan 700-CX, while in the transmit position, and with no modulation, the plate voltage will be 890 volts, the plate current 50 ma, and the power input will be at 45 watts. Average voice power is from 10 to 20 db below peak voice power. Normally some peak clipping in the power amplifier can be tolerated, and a peak-to-average ratio of only 6 db may sometimes occur. Under such conditions, the average power input will be 125 watts, and average plate current will be 156 ma. With power amplifier efficiency of 65 percent, plate dissipation will be 44 watts, or 22 watts per tube. The 8950 is rated at 40 watts, continuous duty cycle. Thus it can be seen that under normal operating conditions, the power amplifier tubes in the Swan 700-CX are not being driven very hard. Note, however, that proper modulation level must be maintained by correct setting of Mic. Gain, and that the length of time in TUNE position should be limited to not more than 30 sec, at a time, #### TRANSMITTER TUNNING Special Notes: Read carefully. Be sure that you understand and remember these notes when turning the transmitter. The most important detail to keep in mind when tuning the transmitter portion of your Swan transceiver is that the P.A. PLATE must be resonated as quickly as possible! The P.A. tubes are dissipating all the power input when they are not in resonance, and can be per- # TRANSMITTER TUNNING (cont.) manently damaged in just a few seconds. Once resonance has been established, the P.A. tubes can operate at full power input for a considerable length of time, although we recommend 30 seconds as a safe maximum. But, it is most important to realize that the 30 second limit assumes that the P.A. PLATE has been immediately resonated. This rule applies generally to all transmitters. - P.A. PLATE resonance may be accomplished by (1) tuning for the "dip" in P.A. cathode current, or (2) tuning for maximum transmitter output, depending on which circuit is being metered. - In the 700 CX you are reading P.A. cathode current when in Press-To-Talk, TRANS., or CW mode, so P.A. PLATE must always be tuned for the "dip" in meter reading when in any of these modes. - 4. When the 700 CX Function Switch is in "TUNE" mode, the meter circuit is automatically switched to indicate transmitter output level, so P.A. PLATE must always be tuned for maximum meter reading when in "TUNE" mode. —Read items (3) and (4) over carefully to be sure you understand. 5. The OUTPUT LEVEL control located on the right hand side of the panel meter adjusts the meter reading to a convenient level when in "TUNE" mode. It is important to realize that this control has no effect whatsoever on transmitter power. It is required because of wide variations in meter readings caused by various antenna loads, and different frequency bands. When in "TUNE" mode, the meter reading is strictly a relative indication of power output. - 6. When first tuning the 700 CX, you may find the 30 second time limit too short. In that event, switch back to REC mode for a minute or so, and then resume tuning procedures. With experience, transmitter tuning will require only 10 to 15 seconds. Do not tune more often than necessary. You should not have to retune except when changing bands or antennas. The P.A. tubes will last for many months or even years of normal operating, but constant tuning at full grid drive will shorten their life considerably. - Caution: The 700 CX may be tuned to frequencies outside the amateur bands. Do not tune or operate the transmitter unless you are within your permitted band limits. # TUNING STEPS: - The Sideband Selector must be in "NORM" position during transmitter tuning procedures. Bandswitch and tuning dial set to desired frequency, MIC. GAIN at minimum, CAR. BAL. straight up, 12 o'clock. - 2. Move the Function Switch to TRANS. mode, and quickly rotate the CAR. BAL, control for minimum meter reading. If the control has no effect at this time, do not be concerned. The P.A. (Power Amplifier) stage is now "resting" or "idling", and there is no grid drive being applied. The meter is reading "idling" current, which should be about 50 ma, as read on the 800 ma, scale. The permissible idling range is between 40 and 60 ma. If the P.A. is idling above or below this range, adjust the P.A. Bias control on back of the chassis. - 3. If this is the first time you are tuning the transmitter, set the COARSE LOAD control to position 4. (After experience in tuning this control may be set to whatever position has been found optimum on each respective band.) - -Note: Up to now, the transmitter has been merely "idling," and there has been no particular time limit involved. The following step begins applying grid drive, and requires caution and observation of the recommended 30 second time limit. - With the Function Switch still in TRANS. mode: - a. Set the CAR. BAL. control to either 9 o'clock or 3 o'clock. - Rotate the P.A. GRID control for maximum meter reading. - c. Immediately rotate the P.A. PLATE control for minimum meter reading, or "dip." This is the critical adjustment known as "resonating" the plate circuit, and must be performed quickly to preserve P.A. tube life! - Re-adjust CAR. BAL. for minimum meter reading. - Switch to TUNE position and quickly adjust P.A. PLATE and P.A. LOAD controls for maximum meter reading. - a. If the meter goes off scale, use the OUT-PUT LEVEL control to bring it back to about midscale. - b. Advance the COARSE LOAD control clockwise a step at a time, readjusting P.A. PLATE each time, until the position for maximum output is found. Use the FINE LOAD control for vernier load adjustment. # TUNING STEPS (cont.) Each time a change in either load control is made, the P.A. PLATE must be re-tuned. - c. Switch back to REC. position. - d. Once the proper settings have been found, make notes on a card so they can be quickly re-set each time you change bands. - 6. Voice Transmission. After tuning up as outlined above, switch to TRANS, position and then carefully set the CAR, BAL, control for minimum meter reading. Carrier balance will usually occur with the CAR, BAL, somewhere around mid-range, but the setting is not important or significant, as long as a null can be observed. While speaking into the mike, slowly rotate the MIC. GAIN control until occasional peak readings of 200 to 225 ma, are obtained. With most microphones, the MIC. GAIN control will be set between 9 and 12 o'clock, but it may vary considerably. The amplified ALC circuit will help limit cathode current to about 225 ma., but turning the MIC. GAIN up too high will still produce flat topping and spurious signals, so it is important to hold it down. The meter is quite heavily damped, and its reading with average voice modulation may not look very impressive, but the voice peaks are going well over the 700 watt power rating of your Swan transceiver. NOTE: Transceiver will not modulate with Function Switch in CAL, position, # 7. AM Operation (Single-Sideband With Carrier) - Tune transmitter to full output on single sideband as described above. - Rotate MIC GAIN control to minimum, full CCW. - c. With Push-to-Talk pressed, rotate CAR. BAL, control until cathode current is approximately 150 ma. - d. While talking in a normal tone of voice into the microphone, increase MIC. GAIN setting until the meter kicks upward
slightly. This setting will result in excellent AM transmission. #### 8. CW Operation - a. Insert a CW Key in the Key Jack on back of the 700-CX Transceiver. - b. After tuning up for maximum output as outlined in Step 5, switch to CW mode, press the key, and insert carrier by rotating the CAR. BAL. control until the meter indicates a P.A. Cathode Current of 500 ma. Power input will then be the rated 400 watts. It may be reduced to whatever level is required to maintain contact. Full power level is not always necessary. NOTE: PTT-VOX switch must be in PTT position. c. In Manual CW operation it will be necessary to switch the Function control back to REC, for receiving and then to CW for transmitting. #### d. Semi-break-in CW When the VOX accessory, model VX-2 is used, Break-In operation may be employed. Move the PTT-VOX switch to VOX position, and rotate the Function control to CW mode. Rotate the VOX GAIN full clockwise and the ANTI-TRIP control on the VX-2 to full counterclockwise position. Press the CW key to transmit. When you stop keying the circuits will automatically switch back to receive mode. Adjust the VX-2 DELAY control to the position which gives the desired delay time in returning to Receive. # e. Off-set CW Transmit Frequency: While receiving, the carrier oscillator frequency is located 300 cycles outside the passband of the crystal lattice filter, thus providing a single heterodyne note, or "singlesignal" for CW reception. When transmitting in CW mode, the carrier frequency is moved approximately 800 cycles higher, placing it well inside the passband. This frequency shift is termed "Off-set CW transmit frequency," and avoids the problems encountered when the receive and transmit frequency are exactly the same. When receiving CW, the receiver must be tuned off frequency several hundred cycles in order to hear an audio beat. By providing this shift automatically in the 700-CX, CW operation is greatly amplified. #### Sidetone Oscillator A sidetone oscillator circuit is included in the 700-CX, and permits CW monitoring. An 800 cycle tone will be heard coming from the speaker or headphones. The strength, or volume of the tone may be changed if desired by changing the resistance value of R1202 in the sidetone circuit. Note that the A.F. GAIN control will have some effect on the sidetone. - After tuning for maximum output, it will be useful to know how much cathode current the P.A. is drawing at full power input. This will help indicate condition of the P.A. tubes, as well as the driver stage and other tubes in the transmitter circuitry. - a. This may be done by switching to CW mode, and inserting full carrier with the CAR. BAL. control. The key jack circuit must be closed by a CW key for this test. # TUNING STEPS (cont.) b. Alternately, you can check P.A. cathode current by whistling a steady tone into the microphone, It will be found that cathode current is typically 700 ma. or more on the lower bands, but will be somewhat lower on 10 and 15 meters, typically between 450-500 ma. Several factors can affect cathode current, including AC input voltage, (or DC voltage in mobile use) tube condition, and circuit alignment. The reading should be used primarily as an indication of gradual change, or deterioration. FIGURE 4. CRYSTAL FILTER TYPICAL CHARACTERISTIC # ALIGNMENT AND TROUBLESHOOTING The following procedures are given in the order performed during the factory alignment for the transceiver. For home servicing, only partial alignment may be necessary. Read all procedures carefully before commencing either partial or complete alignment. See figures and for component placement. The following equipment will be required for complete alignment: - 1. Audio Signal Generator - 2. 500 watt dummy load with output meter - Vacuum tube voltmeter - 4. Field Strength meter #### RECEIVER ALIGNMENT Receiver alignment involves only the adjustment of the Second IF coil and the 10 meter receiver coil. The 15, 20, 40 and 80 meter coils which affect receiver performance are also used in transmit mode. Their adjustment is covered under "Transmitter Alignment." - After allowing one minute for warm-up tune the receiver to the middle of either 15, 20, 40 or 80 meters and at a clear frequency. - Adjust the P.A. PLATE, P.A. GRID and P.A. LOAD front panel controls for maximum background noise, - Adjust IF coil L901 for maximum background noise, - Switch to the center of 10 meters and adjust L105 for maximum background noise. # TRANSMITTER ALIGNMENT The alignment of transmitter circuits involves the adjustment of tuned circuits in the VFO amplifier, V1, the Transmit Mixer, V2 and Driver stage, V3. A dummy load should be connected to the antenna jack during this series of adjustements. ## VFO Amplifier Plate Circuit With VTVM from pin 1 of V7, Receiver Mixer, to ground, on -15 volt scale, adjust VFO Amplifier Plate coils for peak VTVM reading as follows: | Band | VFO
Frequency (kc) | Dial
Frequency (kc) | Coil | |------|-----------------------|------------------------|------| | 80 | 9,300 | 3,800 | L104 | | .40 | 12,625 | 7,125 | L103 | | 15 | 15,725 | 21,225 | L102 | | 10 | 23,000 | 28,500 | L101 | ## Transmitter Mixer and Driver Plate Circuit Adjust P.A. BIAS control fully counterclockwise (maximum bias). - Loosely couple field strength meter to C308 (off pin 2 of V4) with alligator clip on ceramic capacitor body. - Remove screen voltage from V4 and V5 by disconnecting the wire from terminal strip immediately adjacent to V5 base. (Point A, Fig. 5.) - Connect VTVM across R401, 1K resistor between pins 1 and 2 of terminal strip, using 25 volt scale. (Points B and C, Fig. 5.) ### PROCEDURE Adjust bandswitch and P.A. Grid as shown below, and adjust coils for peak VTVM reading, with function switch in TUNE position: | Band | P.A. Grid | Dial
Freq. | Ad | just | |------|------------|---------------|-------|------| | 80 | 12 O'clock | 3,800 | L206 | L305 | | 40 | 11 O'clock | 7,150 | L204 | L304 | | 20 | 11 O'clock | 14,150 | L205 | L303 | | 15 | 2 O'clock | 21,450 | 1.202 | L302 | | 10 | 2 O'clock | 29.0 | 1.203 | L301 | Note: If VTVM and field strength meter exceed full scale reading, switch to REC position, actuate push-to-talk circuit, and insert carrier with carrier balance control to keep reading on scale. Field strength meter and VTVM must both peak at same time since it is possible to tune the coils to the VFO frequency on 10 meters. Care must be taken that the coils be tuned properly. Following the above procedures, replace screen wire to pin 1 of terminal strip adjacent to V5. # Carrier Frequency Adjustment - Tune up on the 20 meter band into a dummy load. Balance out the carrier and adjust the P.A. Bias for 50 ma. - Feed 1500 cycles of audio from the Audio Generator into the MIC input receptacle. Adjust the gain of the audio generator and the MIC GAIN control until the wattmeter reads about 10 or 15 watts. - Adjust both slugs of the Balanced Modulator transformer (T1301) for maximum output. - Adjust the First IF coil (L801) for maximum output. - Increase the gain of the audio generator until the wattmeter reads 40 watts. Sweep the audio generator down to 300 cycles. Adjust the Normal Sideband Carrier Oscillator trimmer (C1502) for a reading of 10 watts. - Switch to Opposite Sideband and adjust carrier oscillator trimmer (C1503) for 10 watts. # PROCEDURE (cont.) Re-check with audio generator set at 1500 cycles and 40 watts. Sweep down to 300 cycles and re-adjust Carrier Oscillator Trimmer capacitors, if necessary, for 10 watts input. # P.A. NEUTRALIZATION With P.A. COARSE LOAD in position 1, set freq. to 14,150, P.A. PLATE CONTROL at 9 o'clock, insert carrier and peak P.A. GRID control, adjusting CAR. BAL. control for 200 ma. Turn P.A. CONTROL slowly through resonance. Cathode current should dip smoothly and rise to 200 ma on the low capacity side of resonance. If, instead, there is a peak above 200 ma either side of the dip, stop rotation of the P.A. plate control at the peak and adjust C406 to reduce Ip to 200 ma. Repeat above check and re-adjust as necessary to obtain the desired smooth dip. For 10 meters, use above procedure but adjust No. C312. NOTE: If replacement of the power amplifier tubes is necessary, it is recommended that a matched pair of 8950 be used for neutralizing purposes. A matched pair of tubes will also give longer tube life. #### VFO ALIGNMENT A trimmer condenser is provided for each VFO range. Trimmer adjustment for the five VFO ranges is through top cover of the VFO compartment. An insulated adjusting tool is recommended. Dial tracking has been factory set by pruning the coil, and will not ordinarily require further adjustment. When dial calibration changes beyond the adjusting range of the front panel dial set control, calibration may be restored by carefully adjusting the trimmer for that range. #### EXAMPLE: The 40 meter band at 4000 KC point is off frequency approximately 8 KC on the high side and cannot be restored by adjusting dial set on front panel. - Set dial set to twelve o'clock position. - Set VFO at 7008 KC so as to hear 100 KC Calibrator. - 3. With an insulated alignment tool in one hand and the VFO dial in the other, rotate the dial a small amount at a time down towards the 7000 KC point, but not enough to lose the 100 KC signal. Now rotate the trimmer so as to zero beat the 100 KC signal. Again rotate the dial a small amount down the band so you still hear the calibrator, stop and with trimmer rezero beat the signal again. Repeat these steps until you have reached 7000 KC point on the dial. Use caution so you do not lose the 100 KC signal. This will prevent you from aligning on the wrong 100 KC note which would put the VFO off frequency by a 100 KC. The following chart lists the actual oscillating frequency of the VFO at band edges. # FREQUENCY CALIBRATION Frequency calibration of the Model 700-CX is in 5 kc increments on 80-, 40-, 20-, and 15-meters, and 20 kc increments on
10 meters. 80 meters is calibrated directly on the upper dial scale. 40-, 20-, and 15-meters are calibrated from zero to 450 on the green tinted center scale. "EXAMPLE": The dial is set at 200 on the green scale. (On 40 meters this would read 7.2 mc; on 20 meters this would read 14.2 mc, and on 15 meters this would read 21.2 mc). 10 meters is calibrated directly on the lower dial scale. Dial accuracy and tracking are quite good on the 700CX, but caution must always be observed when operating near band edges. Measuring the frequency with the calibrator when working near band edges is recommended. #### DIAL SET A dial-set control has been provided so that dial adjustment can be made at any 100 or 25 KC point of the dial. With calibrator on, set the dial to any 100 or 25 KC point closest to the frequency you wish to work. Now adjust dial-set control to zero-beat the VFO with the calibrator. This provides greater accuracy of dial readout. CAUTION: Care must be exercised when tuning for the 100 or 25 KC harmonics of the calibrator. Spurious image signals may be heard, although they will be somewhat weaker than the actual harmonics. VFO Frequency Chart | Dial Frequency (kc) | Oscillator Frequency (kc) | |---------------------|---------------------------| | 3,500 | 9,000 | | 3,800 | 9,300 | | 4,000 | 9,500 | | 7,000 | 12,500 | | 7,200 | 12,700 | | 7,300 | 12,800 | | 14,000 | 8,500 | | 14,200 | 8,700 | | 14,350 | 8,850 | | 21,000 | 15,500 | | 21,250 | 15,750 | | 21,450 | 15,950 | | 28,000 | 22,500 | | 28,500 | 23,000 | | 29,000 | 23,500 | | 29,700 | 24,200 | # CRYSTAL CALIBRATOR FREQUENCY ADJUSTMENT Adjustment of the Crystal Calibrator must be made with an outside source, such as an external receiver that will tune to WWV. Remove transceiver cabinet and bottom. Locate the R.F. Amplifier tube socket, V6. Wrap one end of an insulated wire lead loosely around Pin 1. Connect the other end to the antenna terminal of the external receiver. Tune external receiver to zero beat WWV. Now turn on calibrator in 700CX (either 100 or 25 kc position) and by listening to it on the external receiver, adjust trimmer capacitor C1603 (located on top of chassis next to 100 kc crystal) to zero beat with WWV. # 25 KC MULTIVIBRATOR ADJUSTMENT The calibrator circuit board, located underneath the chassis has a trimmer type potentiometer which is used to adjust the multivibrator circuit so it divides the 100 kc calibrator output by a factor of 4, thus providing calibration markers every 25 kc. If markers are received every 20 kc, or every 33-1/3 kc, adjustment is required. Use a small screwdriver, and carefully turn the control to the location where calibration markers are properly received. An oscilloscope may also be used as an aid, if available. # S-METER ADJUSTMENT With antenna disconnected and with RF Gain fully clockwise, set R906, located on rear panel, for zero meter reading. Make sure no local signals are being received. # CARRIER BALANCE A carrier balance control is provided on the front panel, and is labeled CAR. BAL. This control permits insertion of carrier during CW operation for power control, as well as carrier insertion for AM operation, and as an aid in tuning the transmitter circuits. In addition to the carrier control, there is another located under the chassis near the balanced modulator tube socket, V 13, the 6JH8. This control is called a "Quadrature control," and is of the screwdriver adjust, trimmer type. It will seldom require adjustment, but is recommended particularly when if the 6JH8 tube is replaced, A dummy load must be connected to the transceiver. Connect a sensitive VTVM across the dummy load, or across the coax. line. First tune for maximum output in normal manner. Then switch to TRANS, mode, and balance carrier with CAR, BAL, panel control, Finally, adjust trimmer, the Quadrature control, for carrier null. # L601 TRAP ADJUSTMENT Set bandswitch to 14 mc range. Feed strong 11,9 mc signal from signal generator into antenna jack. Tune around 14,225 until signal is found. Adjust L601 for minimum. | PARTS | LIST | C701 | .001, 20% 500V Disc | C1714 | 11.6 pf Trimmer | |--------------|---|----------------|--|----------------|--| | | | C702
C703 | 30, 10% 500V Disc
.01, 80-20% 500V Disc | C1715 | 10 Disc, Neg Selected | | CAPAC | ITORS | C704 | 430, 5% 500V Mica | C1716
C1717 | 10 Disc, Neg Selected
11.6 pf Trimmer | | C101 | .002, 20% 500V Disc | C705 | 220, 5% 500V Mica | C1718 | 10 Disc, Neg Selected | | C102 | .01, 80-20% 500V Disc | C801 | 68, 5% 500V Disc | C1719 | 30 Disc. Neg Selected | | C103 | .002, 20% 500V Disc | C802 | 01, 80-20% 500V Disc | C1720 | 11.6 pf Trimmer | | C104 | 10, 5% 500V Mica | C803 | .01, 80-20% 500V Disc | C1721 | 10 Disc. Neg Selected | | C105 | 30, 5% 500V Mica | C804 | 10 pf | C1722 | 5 Disc, Neg Selected | | C106 | .01, 80-20% 500V Disc | C901 | .01, 80-20% 500V Disc | C1723 | 11.6 pf Trimmer | | C107 | .01, 80-20 % 500V Disc | C902 | .01, 80-20 % 500V Disc | C1801 | .002, 20% 2KV Disc | | C201 | .1 mf, 200V Tubular | C903 | .01, 80-20% 500V Disc | C1802 | .001, 1KV Feedthru (7) | | C202 | .01, 80-20 % 500V Disc | C1001 | 150, 5% 500V Mica | C1803 | 80 mf 150VDC | | C203 | .002, 20% 500V Disc | C1002 | 220, 20% 500V Disc | C1804A | 40 mf 450VDC | | C204 | 82, 5% 500V Mica | C1003 | .002, 20 % 500V Disc | C1804B | 40 mf 450VDC | | C205 | 100, 5% 500V Mica | C1004 | .002, 20% 500V Disc | C1805 | 10 mf 150V | | C206
C207 | 24, 5% 500V Mica | C1005
C1101 | 500, 20% 500V Disc | C1806 | .01, 80-20 % 500V Disc | | C207 | 1000, 5% 500V Mica
20, 5% 500V Mica | C1102 | 500, 20% 500V Disc
.01, 80-20% 500V Disc | C1807
C1808 | .01, 80-20% 500V Disc
.47, 20% 200V Tubular | | C209 | 20, 5% 500V Mica | C1103 | .001, 20% 500V Disc | C1809 | .05, 10% 200V Tubular | | C210 | 50, 5% 500V Mica | C1104 | .001, 20% 500V Disc | C1810 | .05, 10% 200V Tubular | | C211 | 3.3 pf. 10% 500V Ceramic | C1105 | .001, 20% 500V Disc | C1811 | .002, 20% 500V Disc | | C301 | .01, 80-20% 500V Disc | C1201 | 220, 20% 500V Disc | C1812A | 135 pf PA Grid | | C302 | 50, 5% 500V Mica | C1202 | .01, 80-20% 500V Disc | C1812B | 135 pf PA Grid | | C303 | 100, 5% 500V Mica | C1203 | .001, 20% 500V Disc | C1813 | 20 mf 25VDC | | C304 | 100, 5% 500V Mica | C1204 | .002, 20% 500V Disc | C1814 | 01, 80-20 % 500V Disc | | C305 | 24, 5% 500V Mica | C1205 | .001, 20% 500V Disc | | | | C306 | 50, 5% 500V Mica | C1206 | .001, 20% 500V Disc | RESIST | ORS | | C307 | .002, 20% 500V Disc | C1207 | .01, 10% 1000V Tubular | R101 | 82 ohms | | C308 | .002, 20% 500V Disc | C1301 | .01, 80-20 % 500V Disc | R102 | 56 ohms | | C309 | .01, 80-20% 500V Disc | C1302 | .01, 80-20% 500V Disc | R103 | 47K - I watt | | C310
C311 | 220, 5% 500V Mica | C1303
C1304 | .01, 80-20% 500V Disc
.01, 80-20% 500V Disc | R104 | 4.7K | | C312 | 15, 20% 3KV Disc
1.5-20 pf Mica Trimmer | C1305 | 220, 20% 500V Disc | R105 | 2.2K | | C313 | 270, 5% 500V Mica | C1306 | .01, 80-20% 500V Disc | R106 | 12K - 2 watt | | C314 | 3.3 pf. 3KV Disc | C1401 | .01, 80-20% 500V Disc | R107 | 1K | | C315 | 510, 5% 500V Mica | C1402 | .01, 400V Tubular | R108 | 68 ohms - I watt | | C316 | 100, 5% 500V Mica | C1403 | .01, 80-20% 500V Disc | R109
R201 | 27 Ohms | | C317 | 390, 5% 500V Mica | C1404 | 100, 20% 500V Disc | R202 | 27K
27K | | C319 | 470, 5% 500V Mica | C1405 | .01, 80-20% 500V Disc | R203 | 18K - 2 watt | | C320 | 330, 5% 500V Mica | C1501 | 10, 5% 500V Mica 15 pf | R204 | 6.8K | | C401 | .002, 20% 500V Disc | C1502 | 1.5-20 pf Mica Trimmer | R205 | 6.8K | | C402 | .01, 80-20% 500V Disc | C1503 | 4-40 pf Mica Trimmer | R206 | 6.8K | | C403 | .01, 80-20 % 500V Disc | C1504
C1505 | .002, 20% 500V Disc
270, 5% 500V Mica | R207 | 4.7K - 1 watt | | C404 | .01, 80-20% 500V Disc | C1506 | 270, 5% 500V Mica | R301 | 270K | | C405
C406 | .01, 80-20% 500V Disc
20 pf PA Neut. Trimmer | C1507 | .01, 80-20% 500V Disc | R302 | 100K | | C407 | 270, 5% 2500V Mica | C1602 | 390, 5% 500V Mica | R303 | 100 ohms | | C408 | 270, 5% 2500V Mica | C1603 | 5-80 pf Mica Trimmer | R304 | 10K | | C409 | .002, 20% 2KV Disc | C1604 | .01, 10% 500V Disc | R305 | 8.2K | | C410 | 100, 10% 6KV Disc | C1605 | .002, 10% 500V Disc | R 306
R 401 | 10K
1K | | C411 | 360 pf PA Plate | C1606 | 50, 5% 500V Mica | R402 | 10K Bias Pot. | | C412 | 410 pf PA Fine Load | C1701 | 470, 5% 500V Mica | R403 | 10K - 1 watt | | C413 | 150, 10% 1500V Mica | C1702 | 270, 2% 500V Mica | R404 | 1 ohm - 5% - 2 watt | | C414 | 150, 10% 1500V Mica | C1703 | 430, 2% 500V Mica | R405 | 470 ohms - 5% | | C415 | 330, 10% 1000V Mica | C1704 | 27, 5% 500V Mica | R406 | 680 ohms - 5% | | C416 | 330, 10% 1000V Mica | C1705 | 430, 2% 500V Mica | R407 | 1 ohm - 5% - 2 watt | | C417 | 330, 10% 1000V Mica | C1706 | .01, 80-20% 500V Disc | R408 | 100 ohms | | C418 | 330, 10% 1000V Mica | C1707 | 2 pf Dial Set | R409 | 100 ohms | | C419 | .002, 20% 500V Disc | C1708
C1709 | 12 pf Main Tuning
22 Disc, Neg Selected | R410 | 1K | | C420
C601 | .01, 80-20% 500V Disc
120, 5% 500V Mica | C1710 | 2.5 Disc, Neg Selected | R411 | 10K | | C602 | 5, 5% 500V Disc | C1711 | 6.7 pf Trimmer | R412 | 100K Output Level Pot. | | C603 | .01, 80-20% 500V Disc | C1712 | 39 Disc, Neg Selected | R601
R602 | 100K
56 ohms | | C604 | .01, 80-20% 500V Disc | C1713 | 20 Disc, Neg Selected | R603 | 47K - I watt | | 1 | | | A | 14000 | 77 to 1 Walst | Capacitors are in Picofarads when listed as a whole number. When listed as decimal number value is in microfarads. Unless otherwise specified. Resistors are 10% tolerance, and ½ watt rating, unless otherwise specified. | | TORS (cont.) | R1609 | 5K 25KC Adjust Pot. | Z402 | Parasitic Suppressor | |----------------|----------------------|----------------|----------------------------------|-----------
------------------------------| | R701 | 47K | R1610 | 2.2K | TRANS | SFORMERS | | R702 | 27K | R1611 | 3.9K | | | | R703 | 18K - 2 watt | R1612 | 5.6K | T1301 | | | R801 | 470 Ohm | R1613 | 3.9K | T1201 | AF Output)272-6 | | R802 | 33K - 2 watt | R1701 | 1K-5% | SWITC | HES | | R803 | 1K | R1702 | 1K - 5% | S1A-G | | | R901 | 270K | R1703 | 1K - 5% | S2 | Bandswitch | | R902 | 100 ohms | R1704 | 470 ohms - 5% | S2
S3 | PTT - VOX | | R903 | 47 ohms - 5% | R1705 | 2.7K | | ANL | | R904 | 27K - 1 watt | R1706 | 2.7K | .S4
S5 | PA Coarse Load | | R905 | 100K | R1707 | 470 ohms - 5% | | Power ON - OFF | | R906 | IK S-Meter Zero Pot. | R1801 | 900 ohms - 10 watt | S6
S7 | 100KC - 25KC Cal. | | R907. | TK. | R1802 | 500 ohms - 10 watt | 3/ | CAL-REC-TRANS- | | R1001 | 10K | R1803 | 470 ohms | S8 | CW-TUNE
Sideband Selector | | R1002 | 47K | R1804 | 750 ohms - 10 watt | -30 | Sidenand Selector | | R1003 | 270 ohms | R1805 | 27K | RELAY | S | | R1004 | 270K | R1806 | 27K | K1 | ARDT 12 VIDG C-1 | | R1005 | 1. Meg | R1807 | 470K - 1 watt | K2 | 4PDT, 12 VDC Coil | | R1006 | 10 Meg | R1808 | 27K | N2 | 3PDT, 12 VDC Coil | | R1007 | 47K | R1809 | 10K RF Gain Pot. | CRYST | ALS | | R1008 | 100K | R1810 | 270K | | | | R1101 | 6.8K | R1811 | 10K | Y1501 | 5503.3KC Car. Osc. | | R1102 | 100K | R1812 | 470K | Y1502 | 5500.0KC Car. Osc. | | R1103 | 4.7K | R1813 | 270K | Y1601 | 100KC Crystal Cal. | | R1104 | 100K | R1814 | 4.7K | DIODE | S | | R1105 | 2.2 Meg | R1815 | 1 Meg | D401 | 1N34A | | R1106 | 2.2 Meg | R1816 | 470K | D701 | 1N914 | | R1107 | 270K | COILS | | D1101 | | | R1201 | I Meg AF Gain Pot. | | and the same of the termination | D1101 | 1N34A
1N34A | | R1202 | 47 ohms | L101 | 10 mtr VFO Amp. Coil | D1201 | | | R1203 | l Mcg | L102 | 15 mtr VFO Amp. Coil | D1201 | RCA 39804 (1N3195) | | R1204 | 270K | L103 | 40 mtr VFO Amp. Coil | D1801 | RCA 39804 (1N3195) | | R1205 | 330K | L104 | 20-80 mtr VFO Amp. Coil | D1802 | 1N2974A Zener | | R1206 | 330K | L105 | 10 mtr Rec. Coil | D1803 | RCA 39804 (1N3195) | | R1207 | 33K | L201 | RFC - 200 uh | D1804 | 1N914
1N914 | | R1208 | 680K | L202 | 15 mtr Mixer Coil | D1805 | | | R1209 | 1K | L203 | 10 mtr Mixer Coil | | 1N914 | | R1210 | 27 ohms | L204 | 40 mtr Mixer Coil | TUBES | | | R1301 | 1K | L205 | 20 mtr Mixer Coil | V1 | 6EW6 VFO Amp. | | R1302 | 10K | L206 | 80 mtr Mixer Coil | V2 | 12BE6 Trans. Mixer | | R1303 | 10K Quad. Bal. Pot. | L301 | 10 mtr Driver Coil | V3 | 6GK6 Driver | | R1304 | 18K - 2W | L302 | 15 mtr Driver Coil | V4 | 8950 Power Amp. | | R1305 | 100K | L303 | 20 mtr Driver Coil | V5 | 8950 Power Amp. | | R1306 | 27K | L304 | 40 mtr Driver Coil | V6 | 6BZ6 Rec. RF Amp. | | R1307 | 5K Car. Bal. Pot. | L305 | 80 mtr Driver Coil | V7 | 12BE6 Rec. Mixer | | R1308 | 1K | L306 | RFC - 200 uh | V8 | 1st IF Amp. | | R1309 | 100K | L401 | RFC - 100 uh | V9 | 2nd IF Amp. | | R1310 | 27K | L402 | RFC - 55 uh | V10 | 12AX7 Prod. Det. | | R1311 | 27K | L403 | Final Tanl Coil | | /Rec. AF | | R1401 | 1K | L404 | RFC - 30 uh | V11 | 6BN8 AGC/ALC Amp. | | R1402 | l Meg Mic. Gain Pot. | L601 | 12 MC Trap Coil | V12 | 6GK6 AF Output | | R1403 | 150K | L801 | 1st IF Amp. Coil | V13 | 6JH8 Bal. Mod. | | R1404 | 270K | L901 | 2nd IF Amp. Coil | . V14 | | | R1405 | | L1501 | RFC - 200 uh | . 14 | 12AX7 Trans. AF Amp. | | R1406 | 2.2 Meg | L1701 | RFC - 200 uh | | /Mic. Amp. | | R1501 | 47K
18K | L1702 | RFC - 200 uh | TRANSI | STORS | | | | L1703 | 10 mtr VFO Coil | Q1 | 2N706 | | R1502
R1503 | 1.5K - 5% | L1704 | 15 mtr VFO Coil | Q2 | 2N706 | | R1504 | 2.2K
100 ohms | L1705 | 20 mtr VFO Coil | Q3 | 2N706 | | | | L1706 | 40 mtr VFO Coil | Q4 | MPS 3693 | | R1602 | 10K | L1707 | 80 mtr VFO Coil | Q5 | MPS 3693 | | R1603 | 100K | L1801 | RFC82 uh | Q6 | MPS 3693 | | R1604 | 100K | L1802 | RFC82 uh | Q7 | MPS 3693 | | R1605 | 10K | L1803 | RFC82 uh | - | | | R1606 | 27K | L1804 | RFC - 200 uh | LIGHTS | | | R1607 | 68K | Z301 | Parasitic Suppressor | Bi | GE 47, 6V | | R1608 | 47K | Z401 | Parasitic Suppressor | B2 | GE 47, 6V | | 18 | Resistors a | re ½ watt unle | ss specified. K equals 1000 ohms | i. | | | | | | | | | # TROUBLESHOOTING GUIDE | DEFECT | POSSIBLE CAUSE | |--|--| | PA IDLING CURRENT UNSTABLE | Defective 6LQ6 Defective Bias Potentiometer Defective Bias Supply | | INABILITY TO LOAD TO 400-500 MA. (SEE PAGE 10) | PA Grid Improperly Tuned Bandswitch Improperly Set Antenna Not Resonant at Frequency Defective Transmission Line Defective Mobile Antenna Coil V2, V3, V4, V5 Defective R409 or R408 Defective | | INSUFFICIENT CARRIER SUPPRESSION | Carrier Balance Control Improperly Adjuste Defective 6JH8 Balanced Modulator Carrier Oscillator Frequency Incorrect | | INSUFFICIENT SIDEBAND SUPPRESSION | Excessive MIC, Gain Incorrect PA Load Adjustment Carrier Oscillator Frequency Incorrect | | MICROPHONICS IN RECEIVER | L901 Improperly Tuned V14, V10, V8, V7, or V6 Defective | | LOW RECEIVER SENSITIVITY | PA Grid, Plate, or Load Improperly Set Bandswitch Improperly Set K2 Back Contacts Defective V6, V7, V8, V9, V10, V11, V12 Defective | # VOLTAGE CHART | | | | | | | PI | N NO. | | | | | | | |------------|----|-------|------|---------|---------|---------|-------|----------|------|---------|-----|-------------|-------| | TUBE TYPE | | -1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | V1-6EW6 | R | 0 | .75 | 6.3 AC | 0 | 140 | 130 | 0 | 1000 | 1.00 | | | 100 | | VI-UENU | T | -100 | .75 | 6.3 AC | 0 | 125 | 125 | 0 | - | 7 1. 17 | | Jan 1980 11 | | | V2-12BE6 | R | -28 | 0 | 12.6 AC | 0 | 240 | 215 | 287.74 | - | | | 700 | 1000 | | 12-12-00-0 | T | 0 | 0 | 12.6 | 0 | 245 | 100 | 1000 000 | 1.7 | | - | 1 | 1 3 4 | | V3-6GK6 | R | 0 | -34 | 0 | 6.3 AC | 0 | 0 | 270 | 270 | | | 10.00 | 7 7 7 | | + J-OUNO | T | 0 | -6 | 0 | 6.3 | 0 | 0 | 270 | 250 | | 100 | 1.: | 1000 | | V4-8950 | R | 12.6 | 0 | 0 | 0 | -90 | 0 | 0 | 0 | -90 | .0 | 0 | 0 | | 14-0720 | T | 12.6 | .04 | 265 | 0 | -80 | .04 | 0. | 0 | -80 | 0 | 265 | 0 | | V5-8950 | R | 0 | 0 | 0 | 0 | -90 | 0 | 0 | 0 . | -90 | 0 | 0 | 12.6 | | ¥3-0930 | T | 0 | .04 | 265 | 0 | -80 | .04 | 0 | .0 | 80 | 0 | 265 | 12.6 | | V6-6BZ6 | R | .5 | .8 | 0 | 12.6 AC | 270 | 150 | 0 | | 1 | | 1.00 | 1440 | | V0-00Z0 | T | -31 | 0 | 0 | 12.6 | 270 | -20 | 0 | 1 | | | - | | | V7-12BE6 | R | -26 | 0 | 12.6 AC | 0 | 250 | - 55 | 1.1 | 1 | | | | _ | | | T | .5 | 0 | 12.6 | 0 | 250 | -20 | .3 | | | - | | - | | Ve ranke | R. | .5 | 0 | 12.6 AC | 0 | 230 | 130 | 0 | | | 1 | - | 7 77 | | V8-12BA6 | T | 05 | 0 | 12.6 | 0 | 250 | 150 | 0 | _ | - | 2.5 | 100 | - | | V9-12BA6 | R | -,5 · | 0 | 12.6 AC | 0 | 240 | 125 | 1.9 | | 1 | | 757 | - | | A 3-17D VO | T. | 115 | .0 | 12.6 | 0 . | 255 | -15 | 0 | 1 | 1 | | - | | | V10-12AX7 | R | 45 | .7 | . 1 | 12.6 AC | .0 | 175 | 0 | 1.5 | . 0 | | - | - | | V10-12AA7 | T | 5 | 7 | 5 | 12.6 | .0 | 245 | -90 | 0 | 0 | | | | | V11-6BN8 | R. | 1.6 | 2.6 | .5 | 6.3 AC | 12.6 AC | 1.2 | 260 | 0 | .5 | | 1 7 | - | | A11-005/0 | T | .0. | 2.6 | 1.6 | 6.3 | 12.6 | 0 | 200 | 0. | 1.6 | | 1 | | | V12-6GK6 | R | . 0 | . 8 | - | 12.6 AC | 6.3 AC | - 10 | 270 | 250 | -0 | | | | | A17-00Y0 | T | 12 | -8- | | 12.6 | 6.3 | | 260 | 250 | 0 | | - | | | V13-6JH8 | R | 12 | . 11 | 0 | 6.3 | .0 | -100 | 0 | 270 | 250 | 2 | 1 1 | - | | 413-01119 | T | 70 | -11 | 64 | 6.3 | .0 | 0 | 0 | 260 | 250 | | | | | V14 12 12 | R | 75 | 0 | 0 | 6.3 AC | 6.3 AC | 114 | .0. | .7. | 0. | · | 22 | 1000 | | V14-12AX7 | ·T | 50 : | -0: | 0. | 6.3 | 6.3 | 100 | 0. | .4 | 0 | 7 | 7.7 | | FIGURE 5. BOTTOM VIEW MODEL 700-CX FIGURE 6. REAR VIEW MODEL 700-CX FIGURE 7. TOP VIEW MODEL 700-CX